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Abstract: A medical entity (hospital, nursing home, rest home, revalidation center, etc.) usually
includes a multitude of information systems that allow for quick decision-making close to the medical
sensors. The Internet of Medical Things (IoMT) is an area of IoT that generates a lot of data of different
natures (radio, CT scan, medical reports, medical sensor data). However, these systems need to
share and exchange medical information in a seamless, timely, and efficient manner with systems
that are either within the same entity or other healthcare entities. The lack of inter- and intra-entity
interoperability causes major problems in the analysis of patient records and leads to additional
financial costs (e.g., redone examinations). To develop a medical data interoperability architecture
model that will allow providers and different actors in the medical community to exchange patient
summary information with other caregivers and partners to improve the quality of care, the level
of data security, and the efficiency of care should take stock of the state of knowledge. This paper
discusses the challenges faced by medical entities in sharing and exchanging medical information
seamlessly and efficiently. It highlights the need for inter- and intra-entity interoperability to improve
the analysis of patient records, reduce financial costs, and enhance the quality of care. The paper
reviews existing solutions proposed by various researchers and identifies their limitations. The
analysis of the literature has shown that the HL7 FHIR standard is particularly well adapted for
exchanging and storing health data, while DICOM, CDA, and JSON can be converted in HL7 FHIR or
HL7 FHIR to these formats for interoperability purposes. This approach covers almost all use cases.

Keywords: Internet of Medical Things; IoMT; data exchange; healthcare; medical data; interoperability;
FHIR; CDA; DICOM; HL7

1. Introduction

Medical entities exchange wide amounts of various data between different systems.
The interoperability is generally guaranteed inside of the same medical entities but in
fact, interoperability problems between medical entities are regularly observed. These
incompatibility problems result in multiple repeat examinations for the same patient,
an overload of healthcare facilities, and costs related to the examinations that had to
be repeated.

On the other hand, the increase in the world population leads inexorably to a progres-
sive saturation of healthcare capacities. It has become crucial to increase these structures’
availability and operating costs by avoiding unnecessary examinations. At the same time,
the development of telemedicine means that patients no longer need to be systematically
transferred to healthcare facilities. For savings and efficiency improvements to be made, im-
provements must be made to the interoperability of systems and data exchange standards
to make them efficient.

The comparison and study of system interoperability standards and data standards
are prerequisites for understanding the sticking points and proposing solutions.
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The goal is to emerge insights to build the data interoperability proposal and address
issues of actual interoperability models.

The main contributions to this paper are :

1. The summary of main data standards used in a medical context;
2. The study of the different interoperability models highlights these model’s pros and cons;
3. The highlight of required features of a medical interoperability reference model.

The rest of the paper is organized as follows: Section 2 explains the principal data
standards used to characterize medical data. Each standard is described, and its field of
application is given. The same section highlights standards implemented to ensure the
interoperability of medical data identified in the previous section. Section 3 proposes a
state-of-the-art approach focusing on the implementation of the standards identified in
Section 3 and a comparative study of data interoperability models in the medical context is
proposed. Afterward, features of the ideal interoperability model and drawn limits of the
work are highlighted and discussed in Section 4.

Finally, the work is concluded with lessons learned from the analysis and the perspec-
tives of our work are considered.

2. Main Health System Interoperability Standards

This section presents the main interoperability standards: Health Level 7 (HL7) and
its derived standard, Fast Healthcare Interoperability Resources (FHIR), Digital Imaging
and Communications in Medicine (DICOM), and JavaScript Object Notation (JSON). Each
standard is analyzed, and its main features are emphasized. HL7 is a widely used standard
for healthcare information exchange, while FHIR is a more modern and flexible standard
built upon HL7. DICOM is specifically designed for medical imaging data, facilitating
the sharing and interoperability of images across different systems. JSON is a lightweight
data-interchange format commonly used in web applications. At the end of this section, a
table summarizes all these features.

2.1. Health Level Seven (HL7) Standards

HL7, founded in 1987, is a non-profit standards development organization dedicated
to creating standards for hospital information systems. Over time, it has grown into a
global community of health information experts who work together to develop standards
that promote the exchange of health information and enable interoperability among health
systems [1]. HL7, which stands for Health Level Seven, is a set of international standards
for the exchange, integration, sharing, and retrieval of electronic health information. These
standards define a framework, messaging formats, and protocols for the interoperability of
healthcare IT systems within and across organizations. The HL7 format refers specifically
to HL7 Version 2 (V2). This version is widely used and has been implemented in various
healthcare settings globally. It enables the electronic exchange of health data between
different computer systems, such as electronic health records (EHR) systems, laboratory
information systems, pharmacy systems, and other healthcare applications. The HL7 V2
standard provides a structured format for representing healthcare data and a messaging
framework for transmitting that data between systems. It defines a set of message types
and segments which serve as building blocks for creating messages that carry specific
types of health information. These messages can include various types of data, such as
patient demographics, clinical observations, laboratory results, medication orders, and
more. This standard also specifies how the messages are structured, including the use of
delimiters and data types, to ensure consistency and interoperability. Additionally, HL7 V2
provides guidelines for data exchange, message sequencing, and error handling to facilitate
reliable and accurate transmission of health information. By adopting the HL7 V2 standard,
healthcare organizations can streamline communication between their IT systems and
improve interoperability. It allows for seamless sharing of health data, such as prescriptions,
test results, electronic medical records, and other clinical information, across different
applications and platforms. This promotes continuity of care, enables better coordination
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among healthcare providers, and supports more efficient and accurate decision-making. It
is important to note that HL7 has evolved beyond Version 2, with subsequent versions such
as HL7 Version 3 (V3) and the emerging HL7 Fast Healthcare Interoperability Resources
(FHIR) standard. Each version addresses different needs and challenges in healthcare
data exchange, but HL7 V2 remains widely used and plays a significant role in enabling
electronic health information exchange . This was cited by Schweitzer et al. [2], who
had presented data exchange standards in relation with teleophthalmology, focusing on
store-and-forward teleophthalmology data exchange and future developments in this
area. The authors highlight the need for standards and best practices to ensure seamless
interoperability and exchange of medical ocular images and related data among relevant
stakeholders. The study examines various standards such as IHE, HL7 FHIR, DICOM, and
clinical terminologies and discusses their significance in ophthalmology.

2.2. HL7 Clinical Document Architecture (CDA)

This standard developed by HL7 is a markup standard based on XML and HL7 RIM
(V3). It is used to represent and facilitate the exchange and sharing of electronic medical
records and clinical documents as used by [3–5]. It allows health data to be stored in a
structured format that can be read and interpreted by computer systems, as summarized in
Figure 1.

Figure 1. Block diagram of the CDA standard.

2.3. Fast Healthcare Interoperability Resources Standard (FHIR)

FHIR is a standard developed by Health Level Seven International which is a non-
profit organization. This standard allows the exchange of medical data in the JSON format
in the form of different forms and elements called resources. These can be manipulated
using an API Rest, something that helps the implementation of this standard easily and
network different health systems medical entities to share and exchange health data be-
tween them in real-time as used by [1,6–8]. This standard can be applied to improve the
identification of specific information in order to improve different models as proposed in
different use cases such as the paper proposed by Ammar Mohammed et al. [9]. Their
paper presents a new method for automatically detecting the endocardial border in cardiac
magnetic resonance imaging (MRI) images. The segmentation of the left ventricle in MRI
images is important for evaluating cardiac function and diagnosing abnormalities. The pro-
posed method utilizes a level set segmentation-based approach, where the initial mask for
the algorithm is obtained by thresholding the original image. To localize the left ventricular
cavity, an automatic approach based on evaluating the roundness of objects is proposed.

Using the Rest API—for example, “INSOMNIA”—can either create a new resource
or a list of FHIR resources in JSON or XML format using the POST method. This method
which will subsequently generate an ID for each resource. Then, it can search for them
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from the Rest server with the GET method. In the search criteria in the URL, the type of
the “Patient” example resource is specified. With the same transaction, the observation
of resources loaded into the Rest server can either be made by ID, name, etc. It can also
modify, for example, the information of a patient using the PUT transaction by including
the “observation” value for the “ResourceType” element. It can specify the type of resource
it is working with, such as “Patient”, in the URL preceding the PUT transaction of the
resource. Subsequently, it can utilize GET transactions to retrieve the complete history of
the resource, including all the versions in which changes have been made. The additional
advantage of using the FHIR standard is that it can adapt the list of resources that have
already been loaded in the Rest API. Alternatively, it will create them using the Profile
resource. Then, it can create a profile with the same type as the group of resources that
have already been put in an FHIR server. For example, “Hapi FHIR” will generate a
URL of the profile, specifying the structure that will be required for each resource. The
elements must exist in each. A set of constraints must also be supported in the form of
the cardinality of each element. To apply it to a resource, the URL that corresponds to
the profile that it created must simply be copied. We go back to the Rest API and paste it
in the URL element without forgetting to modify the value of the “resourcetype” element
to “structuredefinition” as the value. All actions are made using the transactions post. To
conclude, it is ensured that the resource is well adapted to the new structure that has
already been specified in profile FHIR in order to unify the structure of all the resources of
the same type. Of course, with the same Rest API, all the possible operations on resources
using the “options” transaction can be visualized. This was summarized in Figure 2, and
used in the paper proposed by Tang et al. [10]. They proposed an FHIR solution that
aims to enhance the recording and archiving of medical imaging data. By utilizing FHIR
resources and including DiagnosticReport, ImagingStudy, Observation, and other relevant
resources, reports, findings, annotations, and DICOM images can be effectively linked
together. For instance, DiagnosticReport references ImagingStudy and DiagnosticReport
can be linked together. The result references findings (observations) and Observation.
DerivedFrom references can contain other observations containing annotation data. The
paper suggests using SVG format for image annotations, which are then encoded and
stored within FHIR Observations.

Figure 2. Block diagram of the FHIR standard.
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2.4. Digital Imaging and Communications in Medicine (DICOM)

DICOM is a standard developed by the National Electrical Manufacturers Association
(NEMA). This standard is used to store, transmit, and display digital medical images,
such as X-rays, MRIs, and ultrasound images. It is subdivided into two main components:
the file format which is used to transmit and exchange images and the DICOM network
protocol, which allows digital medical images to be displayed and stored in IOD formats,
such as X-rays, MRIs, and ultrasound images. These two elements work together so that
the images are in a standard format and the exchange of images is also standardized, as
used by [11–13].

Figure 3 shows that with the help of a DICOM server while using the standard DICOM
v3.0 protocol, a large amount of data can be managed and stored. In addition, ways to
access transferred images and exchange data about patients can be provided, along with
procedures. For example, this can be done with “MiPacs Storage Server”, an electronic
database for data related to medical and dental imaging. This allows DICOM NETWORK
Protocol to program these procedures, as well as generate reports and retrieve images for
and from objects and information systems. The DICOM v3.0 standard provides a means
to communicate with various DICOM v3.0 compatible devices, including scanners and
workstations. MiPACS Storage Server functions primarily as a DICOM provider, but other
stations are also capable of exchanging DICOM files/images with it. The communication
protocol employs TCP/IP as the transport layer, as demonstrated in Figure 3.

Figure 3. Block diagram of the DICOM standard.

2.5. JavaScript Object Notation (JSON)

JSON is used to store and transmit health data in a structured data format. It is often
used for data transmission via APIs as used by [14,15]. A Rest API can be taken advantage
of to manipulate health data. A resource can be added and loaded to the server using
the POST transaction. Changes can be put on the resource with the PUT transaction and
deleted with the DELETE transaction. The list of resource histories can even be retrieved,
or the list of all resources by using the POST transaction can be retrieved. However, neither
the types of resources nor their structures are defined by the REST standard, as summarized
in Figure 4.
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Figure 4. Block diagram of the JSON standard.

2.6. Data Interoperability Standards

Based on the paper proposed by Ait Abdelouahid et al. in 2018 [16], the definition
of interoperability can be understood as follows: Interoperability refers to the ability
of different components, technologies, and systems within an Internet of Things (IoT)
platform to seamlessly work together and exchange information. It involves overcoming
the challenges posed by the heterogeneity of technologies used in the platform, such as
connectors, wireless networks, smartphones, computer technologies, protocols, and web
service technologies. This paper presents a generic meta-model called M2IOTI (Meta-Model
of IoT Interoperability) that defines a simple description of IoT interoperability. This meta-
model allows for the integration of connected objects with varying semantic technologies,
activities, services, and architectures, aiming to achieve a high level of interoperability.
In summary, interoperability in the context of this paper refers to the ability of different
components and technologies within an IoT platform to effectively communicate and
work together, overcoming the challenges of heterogeneity. The meta-model and models
proposed in this paper aim to provide a framework for achieving interoperability in
IoT systems.

Table 1 below presents a comparative study of the data interoperability standards
studied in the previous section in tabular format. The different standards are compared
based on the following criteria: the organization criteria that have developed the standard;
the name of the standard or its version; the description of the essential task that will be
guaranteed by the standard; and the type of data supported—that is, the data generated
after the implementation of this model.

Table 1. Main data interoperability standards used in the medical field.

Organization Standard Description Type of Data Supported

HL7 1

HL7 V2.8 Exchange health data electronically
between the IT systems Electronic data

HL7 V3 (RIM 2) 2.36 Specifications based on HL7’s RIM Create reusable clinical data standards
HL7 CDA 3 Stored health data in a structured format Manage EHR 12 and clinical documents

HL7 FHIR 4 (R4) Specification for online health data
exchange Medical data in JSON 6 or XML 10 format

NEMA 11 DICOM 5 This format is used to store, transmit, and
display images Digital medical imaging
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Table 1. Cont.

Organization Standard Description Type of Data Supported

Douglas Crockford, in 2002 JSON 6 Store and transmit health data in
structured data format Bills and medical reports

FCAT 8 TA 7 Anatomy terms in English and Latin Text

ISO 9

21090:2011 Harmonized data types for
information exchange Text

13606 High-level description of clinical
information JSON 6

IEEE 11073 [17] Personal health data standards HL7 1 format

ISO 23903 Representation of concepts on a
semantic level ICT-supported systems, EHDS 13

1 HL7: Health Level Seven International; 2 RIM: Reference Information Model; 3 CDA: Clinical Document
Architecture; 4 FHIR: Fast Healthcare Interoperability Resources; 5 DICOM: Digital Imaging and Communications
in Medicine; 6 JSON: JavaScript Object Notation; 7 TA: Terminologia Anatomica; 8 FCAT: Federative Committee
on Anatomical Terminology; 9 ISO: International Organization for Standardization; 10 XML: Extensible Markup
Language; 11 NEMA: National Electrical Manufacturers Association; 12 EHR: Electronic Health Records; 13 EHDS:
European Health Data Space.

This synthetic study can be summarized as follows: the HL7 Version 2 (V2) standard
is used to exchange health data electronically between the computer systems of different
organizations. It allows the transmission of data such as prescriptions, test results, and
electronic medical records. However, DICOM presents a format for exchanging, storing,
transmitting, and displaying digital medical files and images in DICOM format, such as
X-rays, MRIs, and ultrasound images. The CDA format is used to represent electronic
medical records and clinical documents, allowing health data to be stored in a structured
format that can be read and interpreted by computer systems. In addition to these standards,
the healthcare industry also utilizes other protocols for exchanging healthcare information.
Two commonly used protocols are MQTT and RESTful. Message Queuing Telemetry
Transport (MQTT) is a lightweight messaging protocol designed for constrained devices
and low-bandwidth, high-latency networks. It follows a publish–subscribe model where
a client can publish messages to a topic, and other clients subscribed to the same topic
receive those messages. MQTT is suitable for healthcare applications that require real-
time data exchange and efficient communication between devices, such as remote patient
monitoring or sensor data collection. It is simplicity and low overhead makes it ideal
for resource-constrained environments [18]. On the other hand, Representational State
Transfer (RESTful) is an architectural style used for designing networked applications.
It relies on HTTP protocols for communication and leverages the standard operations
of GET, POST, PUT, and DELETE to interact with resources. RESTful APIs (Application
Programming Interfaces) enable healthcare systems to expose their functionalities and
allow other systems to access and manipulate the data through HTTP requests. RESTful
APIs are widely used in healthcare applications for integrating different systems, sharing
data securely, and enabling interoperability between healthcare providers [19]. Both MQTT
and RESTful protocols play important roles in exchanging healthcare information. MQTT
provides efficient and real-time communication for scenarios where responsiveness and
low bandwidth usage are crucial. On the other hand, RESTful APIs offer a flexible and
widely supported approach for integrating healthcare systems and accessing resources
in a standard and interoperable manner. It is worth noting that while both MQTT and
RESTful are widely used and provide significant benefits, the choice of protocol depends
on the specific requirements and characteristics of the healthcare application or system
being developed.

3. State-of-the-Art Analysis and Comparative Study
3.1. State-of-the-Art

The implementation of the standards mentioned in the previous section within differ-
ent architectures by different authors are presented.
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In 2019, Mavrogiorgou et al. [20] developed a platform that initially addresses the
collection of data that comes from different heterogeneous IoMTs devices to serve different
application scenarios and deliver their data at different frequencies between them using
5G technologies. In this article, the authors proposed an approach divided into several
stages: Data Acquisition is responsible for the collection of all specifications, APIs, and
network specifications to recover their data; Devices Information Collection makes it
possible to identify the specifications of the connected object; Specifications Similarity
makes it possible to identify syntactical similarities between detected objects; Specifications
Classification aims to classify the specifications of each unknown device based on the K-
Nearest Neighbors (KNN) algorithm [21] in order to group all unknown connected devices
with existing known devices; PIs Mapping and Data Collection allows the specification of
device types detected and their API methods; the Slicing Management component utilizes
the collected data to facilitate further analysis of the slicing management mechanism,
as per the network specifications of the connected devices. The proposed mechanism
is based on the 5G network slicing concept, which enables 5G Core (5GC) operators
to allocate specific parts of their networks to support various medical scenarios; Data
Interoperability involves constructing health ontologies from the acquired datasets and
identifying the commonalities between these ontologies and those representing the HL7
FHIR resources. Subsequently, the datasets are translated into the HL7 FHIR standard; the
Data Interoperability mechanism is implemented as a Chained Network Service in 5GC,
with each of the three different medical scenarios being allocated to its respective network
slice. While the mechanism operates similarly for each network slice, the execution speed
varies based on the computational requirements of the particular medical scenario; the
Data Interoperability mechanism consists of four steps, including the ontology building
system, syntactic similarity identifier, semantic similarity, and overall ontology mapper.

In 2018, Verma et al. [22] described a cloud-centric IoT-based framework to monitor
disease diagnosis and automatically predict potential diseases and their severity levels
without the involvement of healthcare professionals. Moreover, these platforms not only of-
fer physicians technologies that simplify the healthcare process but also provide them with
tools to aid clinical decision-making. This has widely promoted the use of IoMT to improve
healthcare and is now considered a pillar of new ubiquitous healthcare services [23].

In 2016, Azariael et al. [24] proposed a solution to tackle the problem of medical data
security by utilizing smart contracts on the Ethereum blockchain. Their Smart Contract
comprises three sub-contracts, including a Registrar Contract that links the user’s identity
to their Summary Contract on Ethereum; the Summary Contract is utilized by patients to
monitor their medical records; and the Patient–Provider Relationship (PPR) Contract is
responsible for managing the patient–provider relationship and defining pointers to query
and retrieve patient data from the provider’s database. To share data with third parties,
the patient node retrieves the PPR containing the desired data query and updates the third
party’s PPR with the query and a hash code for the requested data. The third-party node
then accesses the provider’s database, with the assistance of a gatekeeper that authenticates
the signature of the original provider by analyzing the hash code to recover the data.

In 2018, Boutros-Saikali et al. [25] presented an implementation of the FHIR standard
by proposing an IoMT platform that allows monitoring of patient biometric data by con-
ducting weekly monitoring of body mass index (BMI) status and referral data to patients
when needed or monitoring the patient activities daily by the platform to compare the
statistics of the differences presented between the objectives of each patient and their real
activity. If needed, patients were sent a set of recommendations. The control of the blood
pressure of the patients would be monitored daily about the minimum and maximum
thresholds to indicate if the critical values are detected, as well as the daily follow-up of
blood glucose identified from different IoTs systems. This platform takes advantage of
artificial intelligence algorithms and the standardization of data formats. Data that come
from the IoMTs network provide practitioners with a virtual patient assistant, something
that will help them identify abnormal situations by tracking data over time. The data can
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help to predict potential short- or long-term dysfunction to ignite red lights and advise
them to act quickly.

The Pulmonary Vascular Research Institute, which comprises healthcare professionals
and researchers focused on pulmonary hypertension (PH), is collaborating to establish an
international registry/data repository for PH.

In 2021, Sony et al. [26] proposed a semantic interoperability model related to medical
health with the use of Healthcare Sign Description Framework (HSDF). Based on the
sign science "Semiotics", it ensures a good level of semantic interoperability of the data
exchanged between several medical entities to avoid all problems of disambiguation of the
meaning of the notes and to improve in terms of accuracy and similarity while using UMLs
unified modeling language system).

In 2017, Jabbar et al. [27] proposed an IoT-SIM model for achieving semantic inter-
operability among heterogeneous IoT devices in healthcare. The model aimed to enable
physicians to remotely monitor their patients using various IoT devices, regardless of
the vendor, by leveraging semantically annotated data. To this end, RDF was utilized to
represent patients’ raw data in a meaningful manner. The model involved using IoT devices
to diagnose diseases and semantically annotate the resulting information using RDF. A
lightweight model was also proposed for semantically annotating data from heterogeneous
IoT devices, which included descriptions of communication among these devices. The SWE
framework was employed to enable sensors and devices to communicate with each other
and provide web services. To ensure interoperability, the collected data were mapped to
an RDF graph database, analyzed, and annotated for semantics. After the collected data
were annotated, they were transmitted to the Intelligent Health Cloud for matching with
the pharmaceutical companies’ prescribed medicines. The resulting information was then
transmitted to the patient’s IoT devices, along with details about the prescribed medicine.
The RDF graph database was used to represent the patients’ diseases database in triples,
allowing it to be queried semantically using SPARQL.

In 2020, Jaleel et al. [28] introduced MeDIC, a framework designed to enhance medical
data interoperability among healthcare devices. MeDIC leverages translation resources
at the network edge through its probing and translating agents, improving upon existing
cloud-based IoMT approaches. MeDIC’s probing agents maintain a list of local MeDIC
devices and facilitate data conversion requests between devices when a device lacks the
capability for such conversions. The receiving device’s translating agent then converts the
data into the required format and returns it to the requesting device. These innovative
agents enable IoMT devices to share computing resources and minimize reliance on cloud
access for data translations.

In 2020, Fischer et al. [29] suggested a medical data interoperability model based on the
HL7/FHIR standard. ETL aims to ensure the research and analysis of patient medical data,
which are in heterogeneous formats. They interrogate them above all in this register and
adapt them to a common data model called Observational Medical Outcomes Partnership
(OMOP). To achieve this model, a set of domain knowledge experts have defined a group
of common parameters, which have been mapped to standardized terminologies such
as LIONIC or SNOMEDCT. Then, these data were extracted in FHIR format via Extract
Transform Load (ETL) and transformed using XSLT in OMOP format in a reasonable time.
The additional advantage of this model is that it allows practitioners to connect several
heterogeneous databases. However, in adopting this platform, a complete ETL process
must be implemented for each source separately, which will generate significant processing
times in the event of massive data.

In 2020, Zong et al. [30] proposed to design, develop, and evaluate a computational
system based on the FHIR standard that enables the automation of the filling of Case Report
Forms (CRFs) for cancer clinical trials using Electronic Health Records (EHRs) to represent
the CRFs and their data population. They leveraged an existing FHIR-based cancer profile
to represent colorectal cancer patient EHR data. Then, they used FHIR Questionnaire and
Questionnaire Response resources to represent CRFs and their data population. They also
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used synoptic reports of 287 Mayo Clinic patients with colorectal cancer from 2013 to 2019
with standard measures of precision, recall, and F1 score to test the accuracy and overall
quality of the pipeline. In 2017, Hong et al. [31] proposed an interactive platform developed
using the shiny framework and R packages for the generation of statistics and analysis of
patient clinical data in the FHIR format.

The proposed solution by Ullah et al. in 2017 [32] was entitled SIMB-IoT model. This
model is dedicated to presenting a new model of semantic interoperability to guarantee
interoperability between several connected medical objects, which prevents different man-
ufacturers. Important contents of data related to the field of health care are generated
and made available to patients and practitioners. A drug recommendation system for
the different symptoms are collected from these connected objects, which then makes it
possible to avoid the side effects of drugs according to the history of each patient.

Costa et al. [33] developed methods for transforming data instances between the ISO
13606 and openEHR standards, which are important standards for electronic health record
(EHR) systems. The transformation process includes both archetype transformation and
data transformation. The research results indicate that the exchange and sharing of clinical
information between these standards are possible. The authors believe that their approach
could be applied to other dual model standards and even to other domains beyond health-
care. The use of ontologies and metamodels in their technological framework has facilitated
semantic interoperability. However, the researchers acknowledge that their solution is
not perfect and that further research is needed, particularly in integrating terminological
knowledge to enhance the semantic aspects of the transformation process. The work has
been supported by grants from the Spanish Ministry for Science and Education.

Baskaya et al., in 2019 [34], developed the mHealth4Afrika project that aims to de-
velop a modular health information system for primary healthcare in resource-constrained
environments. By collaborating with Ministries of Health, health officers, clinic managers,
and healthcare workers from multiple countries, the project co-designs a comprehensive
platform that integrates Electronic Medical Records (EMRs) and Electronic Health Records
(EHRs) using HL7 FHIR. This integration enables data exchange and interoperability to ad-
dress the challenges posed by paper-based data capture methods. The project emphasizes
the importance of standards and interoperability in eHealth and mHealth applications to
prevent data fragmentation. The implementation of HL7 FHIR-based interoperability in the
mHealth4Afrika platform includes the mapping of data attributes and elements between
the platform’s data model in DHIS2 and HL7 FHIR STU3 resources. The platform provides
export and import endpoints, facilitating the generation of HL7 FHIR bundles containing
patient demographics and medical visit information. These bundles encompass resources
such as Patient, QuestionnaireResponse, Questionnaire, Organization, and EpisodeOfCare.
The import process ensures referential integrity and sequential data mapping, enhanc-
ing data consistency. The initial results and ongoing field testing of the interoperability
functionality demonstrate the benefits of transferring patient records between health fa-
cilities and supporting patients with various medical conditions. The project’s approach
is compared to other healthcare systems interoperability efforts, such as the OpenMRS
FHIR Module and DHIS2’s use of HL7 FHIR for importing TrackedEntityInstances. In
summary, the mHealth4Afrika project advances the objectives of developing a modular
health information system, employing a two-way data mapping approach, and making
progress in implementing import and export functionalities for individual patient records.

In 2021, González-Castro et al. [35] presented a case study that explores the application
of digital tools and the CASIDE FHIR representation in a multicenter clinical study to collect
and aggregate survivorship data. The primary objective of the study is to validate the
utilization of big data and artificial intelligence (AI) technologies in enhancing the creation
of cancer survivorship care plans. To accomplish this, two distinct digital tools were
developed: one for patients and another for doctors, both utilizing the FHIR survivor data
model. The patient tool enables data collection through questionnaires and patient-reported
outcome measures (PROMs), supplemented by well-being data obtained from a smart-band
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device. On the other hand, the clinician tool facilitates structured data entry of clinical
patient information. All the collected data are securely stored in an FHIR repository and
made accessible to the PERSIST consortium for analysis, as well as the development of
models and decision support tools. The CASIDE data model has been specifically designed
to offer a standardized representation of cancer survivor information by integrating data
from both clinical and patient perspectives. The paper emphasizes the significance of
data reusability and interoperability in cancer survivorship research while discussing the
strengths and limitations of the CASIDE model. Furthermore, it underscores the advantages
of utilizing FHIR as an interoperability standard, along with the challenges and prospects
associated with leveraging the model for data sharing, integration with medical devices,
and incorporating unstructured clinical notes through NLP tools.

Lackerbauer et al. [36] discussed the design requirements for the electronic treatment
consent (eConsent) model based on the HL7 FHIR standard. The paper identifies six
requirements for the eConsent architecture and proposes a model that uses HL7 FHIR
resources and the SNOMED CT terminology for semantic interoperability with other
health information systems. The proposed architecture includes template forms, treatment
information, patient consent, and signatures. It aims to meet the identified requirements,
but limitations include the low maturity of implemented FHIR resources and the currently
incomplete terminology. Custom extensions of the FHIR resources may be necessary. The
paper emphasizes the importance of patients giving explicit consent to medical treatments
and highlights the elements involved in the informed consent process.

Kiourtis et al. [37] proposed a model that transforms healthcare data into ontologies
and matches them with HL7 FHIR resource ontologies to achieve semantic interoperability.
The mechanism evaluates the syntactic and semantic similarities between the ontologies and
demonstrates its effectiveness in achieving accurate ontology-matching results. However,
it acknowledges the need for further evaluation and improvement of the mechanism. This
model concludes by highlighting the potential of the developed mechanism in addressing
healthcare interoperability issues.

3.2. Comparative Study of Data Interoperability Models

This section is composed of two parts. The first one identifies the different possible
modes of interoperability with the data. The second one proposes a synthetic study and an
analysis of data interoperability models.

3.2.1. Data Interoperability

Interoperability can be defined as the ability to store, transfer, and retrieve data from
different sources in a fast and efficient way. It is subdivided into several types: technical in-
teroperability signifies the physical connectivity established between the object to exchange
bits and bytes. It is possible to exchange data but also contexts and information, focusing
on the understanding of information as an integration object without using it. In this inter-
operability level, the use of Electronic Health Records (EHR) is recommended to exchange
infrastructure and governance (persons/citizens, public health/research institutions, na-
tional digital health bodies, data protection authorities, health professionals, and generates
and patient associations); and semantic interoperability, where the use of international
standard reference systems and ontologies of the European Interoperability Framework
(EIF) are recommended to describe the unambiguous representation of clinical concepts.
The use of the ISO 23903 standard is highly recommended and could be considered a useful
guide in terms of establishing semantic interoperability in the European Health Data Space
(EHDS); in dynamic interoperability, information, its use, and applicability, i.e., knowledge,
can be exchanged, focusing on contextual changes events as integration objects. The most
prominent exchange format for health data is Health Level Seven (HL7) Fast Healthcare
Interoperability Resources (FHIR) to exchange medical data resources in different formats;
with syntactic interoperability, data can be exchanged in standardized formats. When the
same protocols and formats are supported, which is achieved when health data are kept
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in standardized data formats thanks to the use of XML or Rest format European Inter-
operability Framework (EIF); in service interoperability, services are exchanged between
two softwares; in communication interoperability, the focus is on data information as an
integration object without context. There is the ability to exchange data and use information
as an integration object, i.e., data format and syntax; and the last and the main level is the
organizational level in which interoperability will be achieved when processes, user roles,
and access rights are harmonized and clearly defined.

3.2.2. Comparative Study between Data Interoperability Models

Table 2 describes the pros and cons of the main health data interoperability models by
describing the type of interoperability addressed by the data type.

Table 2. Comparative study between data Interoperability models.

References Interoperability
Model

Type of Data
Source Technologies Architecture

Type

FHIR
Resources

Type

FHIR Structure
Type

Mavrogiorgou
et al. in

2019 [20]

5G
OSM-MANO 10

Framework

IoMTs data,
JSON, text

5G Network
Slicing,

OpenCV, MAC
Vendors API,

KNN
Algorithm,

Levenshtein
Distance

5G Centralized
Architecture

Structure
definition,

Observation
Patient

Verma et al. in
2018 [22] CIoT 9 IoMTs data,

JSON, text Cloud Cloud
Architecture

No FHIR
Resources

User Diagnosis
Result (UDR)

Azaria et al. in
2016 [24] MedRec 12 Patients

Contracts

Ethereum
blockchain,
Gatekeeper

Blockchain
Architecture

(Decentralized)

Structure
definition Patient

Boutros-Saikali
et al. in

2018 [25]
IoMT platform Text, JSON,

EHR 6
VD algorithms,

IA, Rest API
RESTful Service

Architecture Observation Patient, OmH 1

Sony et al.
2021, [26]

SIM-HIOT
Model 11

IoTMD 5, EHR,
Home

collection data

HSDF, UMLs
[38] ontology,

NLTK tool

Ontological
Architecture

No FHIR
Resources

Healthcare
signs; Vital

Sign,
Medication
Sign, and

Symptom Sign

Jabbar,
2017, [27] IoT-SIM 8 IoMT data,

JSON, Text

RDF, SWE
framework,

SPARQL query

RDF
Architecture

(Decentralized)

Structure
Definition

IoT devices,
Patients

Jaleel et al. in
2020 [28] MeDic 7

IoMTs Data;
JSON, XML,

Text
Cloud

Cloud Pub-
lish/Subscriber

Architecture

No FHIR
Resources

EHR Records,
JSON

Fischer et al. in
2020 [29]

OHDSI OMOP
Common

Data Model
XML, JSON

ETL, OMOP
CDM, XSLT,

XPath

ETL
Architecture

Structure
Definition,

Observation

Patient,
Encounter, CSV
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Table 2. Cont.

References Interoperability
Model

Type of Data
Source Technologies Architecture

Type

FHIR
Resources

Type

FHIR Structure
Type

Zong et al. in
2020 [30]

FHIR-based
method

EHRs, ACP 3,
EDC 4 systems

ETL, NLP Tools
ETL

Architecture
(Centralized)

Structure
definition

Profile, FHIR
Questionnaire,
Questionnaire

Response
Resources,
Diagnostic

Report,
Observation

Hong et al. in
2017 [31]

Shiny FHIR
framework 13

CSV, XML,
CDM 2

Database

HAPI FHIR
API, Shiny API,

R packages

RESTful service
architecture

Structure
Definition,

Observation

Patient,
Condition,
Procedure

Ullah et al. in
2017 [32] SIMB-IoT 16 IoMT data,

JSON, Text

RDF 14,
SPARQL,

Cloud, Big Data

Centralized
Cloud

Architecture

No FHIR
Resources

Text(String),
MedDRA 15

repository
1 OmH: Open Medical Health 2 CDM: Clinical Document Management; 3 ACP: Australian Colorectal Cancer

Profile; 4 EDC: Electronic Data Capture; 5 IoTMD: Input-Data coming from any IoT device; 6 EHR: Electronic
Health Record data; 7 MeDic: Medical Data Interoperability through Collaboration of healthcare devices Frame-
work; 8 IoT-SIM: IoT based Semantic Interoperability Model; 9 CIOT: Cloud-centric IoT based disease diagnosis
healthcare framework; 10 5G OSM-MANO framework: 5G , Open Source (OS) Management and Orchestration
Framework; 11 SIM-HIOT: Semantic Interoperability Model in Healthcare Internet of Things Using Healthcare Sign
Description Framework; 12 MedRec: Decentralized Medical record management system to handle EMRs using
blockchain technology; 13 Shiny FHIR: an integrated framework leveraging Shiny R and HL7 FHIR to empower
standards-based clinical data applications; 14 RDF: Resource Description Framework; 15 Medra: Repository:
Medical Dictionary for Regulatory Activities; 16 SIMB-IoT: Semantic Interoperability Model for Big-data in IoT.

4. Discussion and Work Limitations

In 2019, Mavrogiorgou et al. [20] proposed a solution for FHIR data acquisition
and transformation via 5G network slicing. The platform they proposed can effectively
manage healthcare data, leveraging the latest data acquisition, 5G network slicing, and
data interoperability techniques. This platform solves the problem of heterogeneity of
medical data by transforming data via 5G from medical objects into FHIR resources, but
this solution remains limited to meeting research and high processing requirements on the
FHIR data. In 2018, Verma et al. [22] proposed a three-phase conceptual framework for an
IoT-based m-Health Monitoring system. In the first phase, users’ health data are collected
from medical devices and sensors and sent to a cloud subsystem using a gateway or Local
Processing Unit (LPU). In phase two, the medical measurements are used by a medical
diagnosis system to make a cognitive decision regarding the individual’s health. In phase
three, alerts are generated for caregivers or parents regarding the person’s health status.
In case of an emergency, alerts are also sent to nearby hospitals to handle the medical
emergency. However, their solution did not address the interoperability of medical data
and did not implement any standard, such as the FHIR standard, for data interoperability.
While Azaria et al. [24] proposed a solution in 2016 that will be used by patients to track
their medical records and the patient by analyzing the hash code originally generated
by the originating patient–provider relationship (PPR) contract, which ensures semantic
interoperability and security of medical data. However, the problem with this solution
is that it does not present a centralized data architecture that patients can use for storing
and retrieving their medical data in the desired format. In 2018, Boutros-Saikali et al. [25]
proposed an IoMT platform as well as a virtual doctor and monitoring application which
aims to provide a solution to ensure the interoperability of monitoring applications and
their security as a proof of concept to the use of the interoperability standard of FHIR
medical data and the REST API. However, this solution has the same limitations related to
demanding research and high processing requests on medical data with the FHIR standard
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as the platform proposed by Verma et al. in 2018 [22]. Sony et al. [26], in 2021, described a
centralized semantic interoperability model which ensures the interoperability of data using
UMLS ontology [39] and HDFS. They present an improved model in terms of accuracy and
similarity of healthcare signs, vital signs, medication signs, or symptom signs. These data
must be exchanged between several medical entities in a unified format. Hence, there is
a need for a standard to ensure organizational interoperability to ensure the storage and
retrieval of these signs which are on different forms with a standardized form. In 2020,
Jaleel et al. [28] presented the MeDIC platform, a framework for the interoperability of
medical data through the collaboration of health devices. MeDIC, which integrates polling
agents, orchestrates translation requests according to the capacity of each of the Medic
devices and by the translation resources. This then allows the data to be converted into the
required format, allowing users of IoMs to minimize access to the cloud. While, in 2020,
Fischer et al. [29] proposed a model based on ETL to extract, transform, and load medical
data from different databases in FHIR form, the implementation of this solution is heavy
and does not respond to a complicated request for medical data. The same limit applies for
the model proposed by Zong et al. in 2020 [30]. The performance of the framework Shiny
FHIR proposed by Hong et al. in 2017 [31] does not ensure research in a larger mass of
medical data. This limits access to the records and does not provide a framework for the
generation of data in a specific format that is either equivalent or not to the data format
of the source. There are also other technical issues related to interoperability with new
versions of the FHIR standard. Ullah et al. [32], in 2017, proposed a SIMB-IOT model as
a semantic interoperability model for heterogeneous IoMT devices by the use of an RDF
database constricted based on two different databases. The first one is a database of diseases
including drugs details, and the second database contains medicines with an overview of
their side effects presented in a graphical form that can be easily viewed and supervised by
patients and doctors simultaneously by the use of SPARQLsedu. However, this model does
not cover the transformation of medical data formats into the format desired by patients and
practitioners, but sends them recommendations. Finally, the limitations of this workmust be
mentioned. Only the main interoperability standards have been considered: the inventory
is not exhaustive. The state-of-the-art was not achieved following a systematic review
methodology. The comparison of standards has been achieved based on the literature
but not on their concrete implementation. Costa et al. [33] proposed a clinical model that
aims to achieve semantic interoperability of Electronic Health Record (EHR) systems. The
dual model architecture is developed to facilitate semantic interoperability, but only a
limited number of EHR systems currently use such standards, making interoperability
challenging. Transformation methods have been developed by the research group to
enable the exchange of clinical information between different standards, specifically ISO
13606 and openEHR. This paper focuses on transforming archetyped data between ISO
13606 and openEHR with no use of the FHIR standard. In 2019, Baskaya et al. [34]
proposed the mHealth4Afrika platform witch integrates EMRs and EHRs, emphasizes the
importance of standards and interoperability to prevent data fragmentation, and enables
real-time patient data monitoring by facilitating data exchange and interoperability. It
supports various medical programs and functionalities, allowing healthcare workers to
capture and access patient information electronically. The use of HL7 FHIR enables the
exchange of data between medical sensors and the patient’s medical record, ensuring
timely and accurate monitoring of the patient’s health status. In 2021, Lorena González-
Castro et al. [35] proposed an interoperability model that highlights CASIDE’s value
as a tool for standardizing data collection and sharing in cancer survivorship. It plays
a vital role in facilitating the secondary use of Real World Data (RWD) for AI-powered
systems, promoting data interoperability and reusability. However, this model presented
several limitations: the model’s mapping rules were based on two specific cancer types
(breast and colon cancer), so its coverage for other types of cancer may need further
assessment and evaluation. The CASIDE model uses SNOMED for coding TNM staging,
but new TNM levels published by the American Joint Committee on Cancer (AJCC) cannot
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be incorporated into SNOMED due to intellectual property restrictions. This limitation
affects the model’s coverage of TNM staging codes. In addition, CASIDE provides limited
support for integrating sensing devices, and the model does not provide a comprehensive
specification for integrating various types of sensing devices or measurements. The PHD
Implementation Guide, which translates health device data into FHIR, is a potential solution
to enhance integration. CASIDE does not include information on genetic data, such as
genomic regions, variants, or genotypes. Future iterations of CASIDE could benefit from
leveraging FHIR profiles specifically dedicated to modeling genomic data or aligning with
existing models such as mCODE. It presents several challenges of FHIR flexibility. While
FHIR offers flexibility for adapting to specific use cases, it introduces challenges in terms
of mapping concepts and data capture variability. Different resources and terminologies
can be used to encode the same meaning, which hampers semantic interoperability. It does
not address the extraction and mapping of data from unstructured clinical notes. Natural
Language Processing (NLP) tools could be employed to automatically extract concepts from
these notes and map them to CASIDE elements, but the accuracy of data extracted through
NLP is still a challenge, Data extracted through NLP or other automated methods may lack
the necessary accuracy for generating alerts or triggering clinical decision support systems.
However, it can still be useful for higher-level analysis, such as computational phenotyping
or cohort selection. This model also presents a limit of integration with EHR vendors in
which CASIDE’s integration with electronic health record (EHR) vendors conformant to
the FHIR standard is facilitated due to FHIR’s widespread adoption. Structured data entry
tools and integration strategies such as those used in the PERSIST clinical study can aid in
obtaining consistent data. The authors of this paper plan to publish CASIDE as an FHIR
implementation guide to enable its implementation by other research organizations and
EHR vendors. They also intend to incorporate NLP tools for extracting information from
unstructured clinical data and develop analytic tools and predictive models to support
personalized survivorship care plans. Overall, while CASIDE addresses several limitations
in cancer survivorship data collection and sharing, some areas require further development
and consideration, such as expanding coverage to other cancer types, integrating genetic
data, and refining data extraction from unstructured clinical notes.

Lackerbauer et al. [36] described the design requirements and proposed model for an
electronic treatment consent (eConsent) architecture based on the HL7 FHIR standard. The
paper identifies six requirements for the eConsent architecture: simple creation, easy to
understand, multi-language support, a signature of various roles, rejection, withdrawal,
and interoperability. The proposed concept utilizes the existing consent model of HL7
FHIR and includes additional resources for presenting information to the patient. It also
incorporates the SNOMED CT terminology for semantic interoperability with other health
information systems. The paper concludes that the proposed eConsent architecture model
meets the identified requirements but acknowledges limitations due to the low maturity of
implemented FHIR resources and incomplete terminology. Custom extensions of the FHIR
resources may be necessary. The model comprises template forms, treatment information,
patient consent, and signatures, all represented using HL7 FHIR resources. The goal is to
provide a standardized, interoperable approach to electronic treatment consent.

This paper proposes a healthcare ontology matching mechanism for transforming
healthcare data to the HL7 FHIR format. The study highlights the importance of ontologies
in healthcare for integrating knowledge and data. It discusses the challenges of manual
ontology matching, which is time-consuming, error-prone, and emphasizes the need for
algorithms that cover both semantic and syntactic aspects. The authors evaluate their
mechanism by comparing the results with manually transformed data in the HL7 FHIR
format. They use a small dataset for evaluation purposes and consider the manual results
as the benchmark for accuracy. The comparison shows that the mechanism achieves high
accuracy, with some variations in the overall percentage that do not affect the final matching.
The paper also discusses the generalizability of the mechanism by performing additional
evaluations on datasets of different sizes and formats, such as JSON, CSV, and XML. The
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results demonstrate the applicability of the mechanism to various data formats, with the
ability to identify and manipulate different XML elements and attributes. Furthermore, the
study presents experimental results for medication and laboratory test datasets. It describes
the process of ontology building, syntactic, semantic similarity identification, and overall
ontology mapping. The results show that the mechanism successfully matches attributes
from the datasets to the corresponding HL7 FHIR resources, with high probabilities of
resemblance. The paper concludes that the developed mechanism provides accurate
results for transforming healthcare data to the HL7 FHIR format. The evaluation of the
mechanism described in this paper uses a small dataset for testing and validation purposes.
This limited dataset may not fully represent the complexity and diversity of real-world
healthcare data. It is important to assess the mechanism’s performance on larger and more
diverse datasets to validate its effectiveness in practical scenarios. Furthermore, the authors
compare the results of their mechanism with manually transformed data in the HL7 FHIR
format and consider the manual results as the benchmark for accuracy. While manual
mapping is commonly used as a reference, it is not necessarily error-free or the absolute
truth. Depending solely on manual results for evaluation may introduce bias and limit the
assessment of the mechanism’s performance.

Holweg Florian et al. [40] present a research project aimed at developing prognostic
models for predicting the risk of spontaneous myocardial infarctions based on a combi-
nation of clinical parameters and image data sets from coronary angiograms. The goal
is to integrate proprietary data from over 30,000 coronary angiograms with additional
clinical parameters and harmonize it for future cross-hospital federated machine learning
approaches. The authors propose a data model based on the HL7 FHIR standard and
describe their mapping approach to ICD-10 and SNOMED CT for coronary angiography
observations. The paper discusses the identification and demographic data of patients,
clinical parameters related to stenosis severity in coronary arteries, and the use of HL7
resources for representing observations. The proposed data model provides a standardized
and interoperable representation of coronary angiography observations, facilitating the
integration of clinical data for risk prediction algorithms and future research collaborations.

The potential usage of FHIR standard has been argued to be able to be used to develop
patient monitoring and diagnostic applications and to help practitioners and medical
entities achieve a high level of data interoperability. Table 3 indicates the parameters and
their compatibility with the discussed models:

Table 3. Key Interoperability models discussed and their compatibility with certain parameters.

Model Data
Interoperability Standard (FHIR) Centralized

Architecture
Real-Time

Monitoring
Ease of

Implementation

Mavrogiorgou
et al. [20]

Yes (limited to
research) FHIR No Yes Moderate

Verma et al. [22] No N/A Yes Yes Moderate
Azaria et al. [24] Yes N/A No No Moderate
Boutros-Saikali

et al. [25] No FHIR No Yes Moderate

Sony et al. [26] Yes UMLS ontology Yes Yes Moderate
Jaleel et al. [28] Yes N/A No Yes Moderate

Fischer et al. [29] No N/A No No Complex
Zong et al. [30] No N/A No No Complex
Hong et al. [31] No N/A No No Complex
Ullah et al. [32] No N/A No No Moderate
Costa et al. [33] Yes Archetyped-data No No Complex

Baskaya et al. [34] Yes FHIR Yes Yes Moderate
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Table 3. Cont.

Model Data
Interoperability Standard (FHIR) Centralized

Architecture
Real-Time

Monitoring
Ease of

Implementation

Gonzales et al. [35] Yes Yes Yes Yes Moderate
Lackerbauer

et al. [36] Yes Yes Yes Yes Complex

Kiourtis et al. [37] yes RDF Ontologies Yes No Complex
Holweg Florian

et al. [40] Yes HL7 FHIR, ICD-10,
SNOMED CT Yes Yes Moderate

Note: “N/A —Not Applicable” indicates that the specific model did not address or implement the parameter
in question.

Based on the discussion above, the necessary characteristics of a reference model for
medical interoperability can be inferred as follows:

Data Transformation: The reference model should facilitate the transformation of
medical data into a standardized format, such as FHIR, to ensure compatibility and in-
teroperability across different systems and applications. Interoperability Standards: The
model should support the use of interoperability standards such as FHIR, which enable
seamless exchange and integration of healthcare information. Semantic Interoperability:
The reference model should address the semantic interoperability of medical data, ensuring
that the meaning and context of data are preserved and understood consistently across
different entities and systems. Centralized Data Architecture: An ideal reference model
should provide a centralized data architecture that allows patients to store and retrieve their
medical data in the desired format, promoting accessibility and efficient data management.
Security and Privacy: The model should incorporate mechanisms to ensure the security
and privacy of medical data during its exchange and storage, complying with relevant
regulations and standards. Modularity and Extensibility: The reference model should
be modular and extensible, allowing for the incorporation of new components, technolo-
gies, and standards to accommodate evolving healthcare requirements and advancements.
Performance and Scalability: The model should be designed to handle large volumes of
medical data efficiently and scale to support interoperability across diverse healthcare
entities and systems. Integration with IoT Devices: As highlighted in the discussion, the
reference model should consider the integration of IoT devices and health devices to enable
seamless data exchange and collaboration between different health devices and systems.
Governance and Maintenance: The reference model should have a well-defined gover-
nance structure and ongoing maintenance processes to ensure its long-term sustainability,
relevancy, and continuous improvement. Practical Implementation: The model should
address the practical implementation challenges associated with interoperability, including
data extraction, transformation, and loading processes while considering the complexity of
medical data and the specific requirements of healthcare organizations.

These characteristics reflect the specific context and considerations mentioned in the
discussion and highlight the key aspects that a reference model for medical interoperability
should encompass to facilitate effective data exchange and integration in the healthcare domain.

5. Conclusions and Perspectives

This paper focused on the main standards used to describe and characterize data in the
medical field. It is continued by the identification of standards allowing data compatibility
and ensuring their interoperability. Afterward, a state-of-the-art allowed us to analyze
concrete implementation on real use cases and highlight the pros and the cons of all these
approaches. This analysis enabled us to identify and discuss ideal features of the data
interoperability model for the medical field.

The analysis of the literature has shown that each of the models that have been studied
in the state of the art presents different limits on the technical side or the standardization
side of medical data. To alleviate these limitations, the features of the ideal reference
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model have been identified. This model is characterized by the capacity to identify medical
data of any type by a medical entity and store them in a centralized database in a unified
format and extract it from this database by another entity in the desired format while
drawing advantage of the technologies used in the previously proposed models that it
has studied. As an example UMLS, the model presented by Sony et al presents the best
reference interoperability model to exchange medical data. It can help to ensure the study
of similarities with ontological medical data identified from different medical databases,
the cloud that can be used for medical data storage, and the ETL that can help us for the
extraction, transformation, and construction of a structured database.

Future works, based on the state-of-the-art analysis and the conclusion of this paper,
will develop a new reference model of interoperability systems. Then, an adapted inter-
operability architecture will be built. This paper shows that the HL7 FHIR standard is
particularly well adapted for exchanging and storing health data, while DICOM and CDA.
JSON can be converted in HL7 FHIR or HL7 FHIR to these formats for interoperability
purposes. This approach covers almost all use cases. These features will be implemented in
future architecture, which will be published in the next paper.
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The following abbreviations are used in this manuscript:

5GC 5G Core
5G OSM-MANO Framework: 5G, Open Source Management and Orchestration Framework
ACP Australian Colorectal Cancer Profile
AI Artificial Intelligence
AJCC American Joint Committee on Cancer
API Application Programming Interface
BMI Body mass index
CDA Clinical Document Architecture
CDM Clinical Document Management
CIOT Cloud-centric IoT based disease diagnosis healthcare framework
CRF Case Report Form
CSV Comma-separated values
DICOM Digital Imaging and Communications in Medicine
eConsent electronic treatment consent
EDC Electronic Data Capture
EHDS European Health Data Space
EHR Electronic Health Records
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EIF European Interoperability Framework
ETL Extract, transform, load
FCAT Federative Committee on Anatomical Terminology
FHIR Fast Healthcare Interoperability Resources Standard
HSDF Healthcare Sign Description Framework
HL7 Health Level Seven
IA Artificial Intelligence
IoMT Internet of Medical Things
IoT Internet of Things
IoTMD Input-Data coming from any IoT device
IoT-SIM IoT-based Semantic Interoperability Model
ISO International Organization for Standardization
JSON JavaScript Object Notation
KNN K-Nearest Neighbors
LPU Local Processing Unit
MeDic Medical Data Interoperability through Collaboration of healthcare

devices Framework
Medra Repository: Medical Dictionary for Regulatory Activities
MedRec Decentralized Medical record management system to handle EMRs

nusing blockchain technology
NEMA National Electrical Manufacturers Association
NLP Natural Language Processing
OmH Open Medical Health
OMOP Observational Medical Outcomes Partnership
PH Pulmonary Hypertension
PROMs patient-reported outcome measures
PPR Patient-Provider Relationship
RDF Resource Description Framework
RIM Reference Information Model
RWD Real World Data
Shiny FHIR Integrated framework leveraging Shiny R and HL7 FHIR
SIMB-IoT Semantic Interoperability Model for Big-data in IoT
SPARQL SPARQL Protocol and RDF Query Language
SWE Sensor Web Enablement
TA Terminologia Anatomica
UDR User Diagnosis Result
UML Unified Modeling Language
UMLs Unified Medical Language System
VD Virtual Doctor
XML Extensible Markup Language
XPath XML Path Language
XSLT Extensible Stylesheet Language Transformations
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